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Unsupervised Multi-view Learning

» Real-world data can be collected from different sources, e.g.,

» Newspaper articles in multiple languages,
> Multi-omic data: genomics, transcriptomics, methylomics...

» Aim: fuse information from multiple views to gain greater
insights compared to considering a single view.
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Unsupervised Multi-view Learning

» Real-world data can be collected from different sources, e.g.,

» Newspaper articles in multiple languages,
> Multi-omic data: genomics, transcriptomics, methylomics...

» Aim: fuse information from multiple views to gain greater
insights compared to considering a single view.

» Multi-view dimensionality reduction: the multi-view dataset
is reduced to a lower-dimensional space to compactly
represent the heterogeneous data. Applications:

> Multi-view generation and domain translation: generation of
new samples in multiple views simultaneously or generation of
missing views.

> Multi-view clustering: using several views can reveal
structures not seen with a single data source (e.g., cancer
subtypes can be defined based on gene expression and DNA
methylation together).
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Motivation
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(reproduced from [Yang et al., 2021])
Multi-view data integration and domain translation: each view

represents a different modality of the same population of cells.

7/28



Kernel Principal Component Analysis (KPCA)

kernel PCA
:J' ‘

(reproduced from [Mika et al., 1999])

» Nonlinear extension of PCA.
» Linear PCA is performed in the feature space induced by the
feature map ¢.
Primal problem [Suykens et al., 2002]:
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Dualization of Kernel PCA

Obtain upper bound to primal objective using Fenchel-Young

inequality ﬁeTeJr %hTh > e’ h[Suykens, 2017]; [Tonin, Patrinos,
and Suykens, 2021] :

n 1 &
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N N
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Dualization of Kernel PCA

Obtain upper bound to primal objective using Fenchel-Young

inequality ﬁeTeJr %hTh > e’ h[Suykens, 2017]; [Tonin, Patrinos,
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RKM Dual Problem of Kernel PCA

Stationary points of J:

o
oh;

od 1

=0 = WTo(x)=Mh;,Vi=1,...,N,

Substituting the expression for W in the first equation gives the
eigenvalue problem:
y
—KH™ = HTA,
n
where
> H=[hy,...,hy] € RSN,
> s < N is the number of selected principal components
> A =diag(\1,...,\s) € RS,
> K € RN*N s the kernel matrix: Kj = o(x;) " ¢(x)).
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Multi-view Kernel PCA

Consider two views and two corresponding feature maps
¢1: Qx = Hx and ¢ : Q, — H,,. The multi-view KPCA objective is

[Pandey, Schreurs, and Suykens, 2021]:
.

A
Juvkpea = Y — ¢1(x) U — da(yi) Vi + EhiThi

+ ;7:1Tr (VTu)+ 210 (VTV) ,

2

where

» U, V are the unknown interconnection matrices,

» h;is the latent variable of a common subspace H C Hx @ H,.
Training corresponds to the following eigenvalue problem:

<1K1 + 1K2> HT = HTA,
T 72

where Ki, K> are the kernel matrices of the first and second view.
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Generative Multi-view Kernel PCA
@ Task: given a latent variable h*, generate data point
X* € Qy, y* € Qyinboth views.

® Problem: compute the inverse images of the feature maps
o1, o2 (pre-image problem).

¢ Solution: use parametrized feature maps and learn both the
feature maps and the pre-image maps 1 : Hx — Qx,

Yo Hy — . The parametrization depends on the data type of
each view (e.g., CNN for images, GNN for graphs, LSTM for time
series, etc.)

U,vV.h

N
. Y 2
min  Jaen-RKM = My xpca + N ( D11 = g, (d10, ()
04 7927&1:%2 =1

N
+ Z Hy,- — ¢2<2(¢292(yi))H2>

i=1
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Generative Multi-view Kernel PCA
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(reproduced from [Pandey, Schreurs, and Suykens, 2021])

Gen-RKM schematic. The single subspace H C HX@Hy is
shared between the two views Q,,Q,. The ¢4, ¢> are the view-
specific feature maps, 1, ¥o are the pre-image maps. The inter-
connection matrices U, V capture the view-specific dependencies
between the shared latent variables and the mapped data sources.
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Generatlve Multi-View Kernel PCA: Disentanglement

Y position

hair color

Each row shows the generated images corresponding to the traversal in the
latent space plotted in the first column. [Pandey, Schreurs, and Suykens, 2021]

Interpretability: changing one latent variable affects only one
generative factor. Application: separate biological factors. 15/28



Generative Multi-View Kernel PCA: Multi-view
Generation
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Multi-view generation on the Sketchy dataset showing labels, images, and

sketches generated together from the single latent space # shared among all
views. [Pandey, Schreurs, and Suykens, 2021]
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Multi-View Kernel Spectral Clustering
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Multi-omic clustering approaches

Early integration: Concatenate omics _ Eé &= Single-omic clustering

Late integration: Cluster omics separately@ @ Integrate clusterings
( X))
© & -

Features
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Statistical methods: Probabilistic modeling X ~ N(O, WW’) +y

(reproduced from [Rappoport and Shamir, 2018])

Overview of multi-omic clustering algorithms to reveal further

insights into biomedical omics dataset.
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Kernel Spectral Clustering (KSC)

Weighted KPCA with k clusters [Alzate and Suykens, 2008]:

k—1 k—1

1 T 1 T
. 1 O — 1 NS 00T pt g
W(/)fZ('/?,e(l) 2 121: e 2N ,Z; ve ©

st. el =ow) b1y 1=1,... k-1,

where
> & =[p(x1)7;...;0(xn) ] is the feature matrix,
» e() ¢ RN is the /-th clustering score with clustering indicator
sign(el"),
» D is the degree matrix, motivated by the random walks model,
inducing the clustering: D = > ¢(x) " ¢(X).
j
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Multi-view Kernel Spectral Clustering
Extend KSC to V views with pairwise coupling terms [Houthuys,
Langone, and Suykens, 2018]:

V k-1

o ZZZW[V "’

e[V ==t
%
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1 oSl T
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where
> Slvl — p~z plul 2 couples view v and u.
The coupling term describes the correlation between the
clustering variables of two different views. Problem (1) is optimized
with Lagrangian duality — solve a VN x VN eigenvalue problem. .,



Multi-view KSC - Latent Space

MV-KSC (1) MV-KSC (2)

Dataset with V = 3 views with

01 ‘J 017 image and text data
WTRE—] e > MV-KSC achieves better
JL',_,_ separation than KSC on

000 00008 concatenated views
MV-KSC (3) » MV-KSC has one latent
] 005 i ? variable for each view —
000 14 22 ~0.05 less interpretability with
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MV-KSC with Shared Latent Space: MV-KSC-RKM
Obtain upper bound to weighted KPCA using the weighted

Fenchel-Young inequality 21—)\«9TD*1 e+ 2hTDh >e'h:

2
k—1
Jeon = IS 00— VST 060 D160 st e — o
I=1
k—1 A0 T k—
< - (CD w(’>) A +th’> Dh) 4 gz ")

=1 1=1

In the multi-view case, we incorporate the KSC view-specific
objectives with different feature map for each view and couple the
views by imposing that the latent variable his common to all views.
Consequences:
» Single latent space — improved interpretability
» Legendre—Fenchel transformation leads to a N x N eigenvalue
problem — better efficiency, independent of the number of
views and of the number of features
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MV-KSC-RKM - Shared Latent Space
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Future Extensions
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Future challenges

» Encode prior knowledge in the learned disentangled latent
variables
> Force the model to learn specific features such as the texture of
the tissue
» Explicit feature maps for multi-view clustering, e.g., Graph
Neural Networks
> Spatial transcriptomics
» Unpaired multi-view learning
> Different cells have different modalities
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