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Unsupervised Multi-view Learning

I Real-world data can be collected from different sources, e.g.,
I Newspaper articles in multiple languages,
I Multi-omic data: genomics, transcriptomics, methylomics...

I Aim: fuse information from multiple views to gain greater
insights compared to considering a single view.

I Multi-view dimensionality reduction: the multi-view dataset
is reduced to a lower-dimensional space to compactly
represent the heterogeneous data. Applications:

I Multi-view generation and domain translation: generation of
new samples in multiple views simultaneously or generation of
missing views.

I Multi-view clustering: using several views can reveal
structures not seen with a single data source (e.g., cancer
subtypes can be defined based on gene expression and DNA
methylation together).
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Motivation

(reproduced from [Yang et al., 2021])

Multi-view data integration and domain translation: each view
represents a different modality of the same population of cells.
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Kernel Principal Component Analysis (KPCA)

(reproduced from [Mika et al., 1999])

I Nonlinear extension of PCA.
I Linear PCA is performed in the feature space induced by the

feature map φ.
Primal problem [Suykens et al., 2002]:

min
w ,e

1
2
‖w‖2 − 1

2λ

N∑
i=1

e2
i s.t. ei = wTφ(xi)
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Dualization of Kernel PCA
Obtain upper bound to primal objective using Fenchel–Young

inequality
1

2λ
eT e +

λ

2
hT h ≥ eT h [Suykens, 2017]; [Tonin, Patrinos,

and Suykens, 2021] :

Jp =
η

2
Tr W T W − 1

2λ

N∑
i=1

eT
i ei s.t. ei = W Tφ(xi)

≤ −
N∑

i=1

eT
i hi +

λ

2

N∑
i=1

hT
i hi +

η

2
Tr
(

W T W
)

s.t. ei = W Tφ(xi)

= −
N∑

i=1

φ(xi)
T Whi +

λ

2

N∑
i=1

hT
i hi +

η

2
Tr
(

W T W
)

, J
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RKM Dual Problem of Kernel PCA
Stationary points of J:

∂J
∂hi

= 0 =⇒ W Tφ(xi) = λhi , ∀i = 1, . . . ,N,

∂J
∂W

= 0 =⇒ W =
1
η

N∑
i=1

φ(xi)hT
i .

Substituting the expression for W in the first equation gives the
eigenvalue problem:

1
η

KHT = HT Λ,

where
I H = [h1, . . . ,hN ] ∈ Rs×N ,

I s ≤ N is the number of selected principal components
I Λ = diag(λ1, . . . , λs) ∈ Rs×s,
I K ∈ RN×N is the kernel matrix: Kij = φ(xi)

Tφ(xj).
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Multi-view Kernel PCA
Consider two views and two corresponding feature maps
φ1 : Ωx → Hx and φ2 : Ωy → Hy . The multi-view KPCA objective is
[Pandey, Schreurs, and Suykens, 2021]:

JMV-KPCA =
N∑

i=1

− φ1(xi)
T Uhi − φ2(yi)

T Vhi +
λ

2
hT

i hi

+
η1

2
Tr
(

UT U
)

+
η2

2
Tr
(

V T V
)
,

where
I U,V are the unknown interconnection matrices,
I hi is the latent variable of a common subspace H ⊆ Hx ⊕Hy .

Training corresponds to the following eigenvalue problem:(
1
η1

K1 +
1
η2

K2

)
HT = HT Λ,

where K1,K2 are the kernel matrices of the first and second view.
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Generative Multi-view Kernel PCA
� Task: given a latent variable h?, generate data point
x? ∈ Ωx , y? ∈ Ωy in both views.
å Problem: compute the inverse images of the feature maps
φ1, φ2 (pre-image problem).
 Solution: use parametrized feature maps and learn both the
feature maps and the pre-image maps ψ1 : Hx → Ωx ,
ψ2 : Hy → Ωy . The parametrization depends on the data type of
each view (e.g., CNN for images, GNN for graphs, LSTM for time
series, etc.)

min
U,V ,hi ,

θ1,θ2,ζ1,ζ2

JGen-RKM = Jstab
MV-KPCA +

γ

2N

( N∑
i=1

∥∥xi − ψ1ζ1
(φ1θ1

(xi))
∥∥2

+
N∑

i=1

∥∥yi − ψ2ζ2
(φ2θ2

(yi))
∥∥2
)
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Generative Multi-view Kernel PCA

Hx Hy

H

Ωx Ωy

U> U V V >

φ1(·) ψ1(·) ψ2(·) φ2(·)

(reproduced from [Pandey, Schreurs, and Suykens, 2021])

Gen-RKM schematic. The single subspace H ⊆ Hx
⊕
Hy is

shared between the two views Ωx ,Ωy . The φ1, φ2 are the view-
specific feature maps, ψ1, ψ2 are the pre-image maps. The inter-
connection matrices U,V capture the view-specific dependencies
between the shared latent variables and the mapped data sources.
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Generative Multi-View Kernel PCA: Disentanglement

Each row shows the generated images corresponding to the traversal in the
latent space plotted in the first column. [Pandey, Schreurs, and Suykens, 2021]

Interpretability: changing one latent variable affects only one
generative factor. Application: separate biological factors. 15/28
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Generative Multi-View Kernel PCA: Multi-view
Generation

Airplane Apple Motorcycle Candle Flower Airplane Baloon Bird Airplane

Multi-view generation on the Sketchy dataset showing labels, images, and
sketches generated together from the single latent space H shared among all

views. [Pandey, Schreurs, and Suykens, 2021]
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Multi-View Kernel Spectral Clustering
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Multi-omic clustering approaches

(reproduced from [Rappoport and Shamir, 2018])

Overview of multi-omic clustering algorithms to reveal further
insights into biomedical omics dataset.
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Kernel Spectral Clustering (KSC)

Weighted KPCA with k clusters [Alzate and Suykens, 2008]:

min
w (l),b(l),e(l)

1
2

k−1∑
l=1

w (l)T
w (l) − 1

2N

k−1∑
l=1

γ(l)e(l)T
D−1 e(l)

s.t. e(l) = Φw (l) + b(l)~1N , l = 1, . . . , k − 1,

where
I Φ = [φ(x1)T ; . . . ;φ(xN)T ] is the feature matrix,
I e(l) ∈ RN is the l-th clustering score with clustering indicator

sign(e(l)),
I D is the degree matrix, motivated by the random walks model,

inducing the clustering: Dii =
∑

j

φ(xi)
Tφ(xj).
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Multi-view Kernel Spectral Clustering
Extend KSC to V views with pairwise coupling terms [Houthuys,
Langone, and Suykens, 2018]:

min
w [v ](l) ,e[v ](l)

1
2

V∑
v=1

k−1∑
l=1

w [v ](l)T w [v ](l)

− 1
2N

V∑
v=1

k−1∑
l=1

γ[v ]
(l)

e[v ](l)T D[v ]−1
e[v ](l)

−1
2

V∑
v ,u=1,v 6=u

k−1∑
l=1

ρ(l)e[v ](l)T S[v ,u]e[u](l)

s.t. e[v ](l) =
(

Φ[v ] − ~1N µ̂
[v ]T
)

w [v ](l) ,

(1)

where
I S[v ,u] = D[v ]−

1
2 D[u]−

1
2 couples view v and u.

The coupling term describes the correlation between the
clustering variables of two different views. Problem (1) is optimized
with Lagrangian duality→ solve a VN × VN eigenvalue problem. 20/28



Multi-view KSC - Latent Space

0.0
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Dataset with V = 3 views with
image and text data
I MV-KSC achieves better

separation than KSC on
concatenated views

I MV-KSC has one latent
variable for each view→
less interpretability with
many views
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MV-KSC with Shared Latent Space: MV-KSC-RKM
Obtain upper bound to weighted KPCA using the weighted

Fenchel–Young inequality
1

2λ
eT D−1e +

λ

2
hT Dh ≥ eT h:

JKSC =
1
2

k−1∑
l=1

w (l)T
w (l) − 1

2N

k−1∑
l=1

γ(l)e(l)T
D−1e(l) s.t. e(l) = Φcw (l)

≤ −
k−1∑
l=1

(
Φcw (l)

)T
h(l) +

k−1∑
l=1

λ(l)

2
h(l)T

Dh(l) +
η

2

k−1∑
l=1

w (l)T
w (l)

In the multi-view case, we incorporate the KSC view-specific
objectives with different feature map for each view and couple the
views by imposing that the latent variable h is common to all views.
Consequences:
I Single latent space→ improved interpretability
I Legendre–Fenchel transformation leads to a N ×N eigenvalue

problem→ better efficiency, independent of the number of
views and of the number of features
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MV-KSC-RKM - Shared Latent Space
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Dataset with V = 3 views with
image and text data
I The clusters in the common

latent space are better
separated

I Improved data discovery
thanks to a single latent
space

I Outputs not only 2D plot, but
also clustering labels (unlike
t-SNE, UMAP)
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Future Extensions

24/28



Future challenges

I Encode prior knowledge in the learned disentangled latent
variables
I Force the model to learn specific features such as the texture of

the tissue
I Explicit feature maps for multi-view clustering, e.g., Graph

Neural Networks
I Spatial transcriptomics

I Unpaired multi-view learning
I Different cells have different modalities
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