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Core idea

Model

Primal representation

Dual representation

linear, polynomial
deep neural networks
Primal-Attention

Mercer kernel
asymmetric kernel
Self-attention in KSVD

Parametric

Kernel-based

Conjugate feature duality
Lagrange duality
Fenchel duality

Duality principle

Core framework behind a series of three papers
Faster and robust/sparse Kernel PCA [Ton+23]
Nonlinear SVD through asymmetric kernels [Tao+23]
New representation of self-attention in Transformer [Che+23] 2/47



High-level look on Transformer: introduction
Transformer as
autoencoder

Multi-layer encoder
and decoder Transformer Encoder

block

from [Dos+21], alammar
3/47

https://jalammar.github.io/illustrated-transformer/


High-level look on Transformer: self-attention

Queries, keys, values as
linear projections of the
input sequence:

q(xi) = Wqxi

k(xi) = Wkxi

v(xi) = Wv xi

(source from [Chi+23])

Self-Attention

Attention(Q,K ,V ) = softmax
(

QK T
√

dk

)
V

Multi-Head Self-Attention (MHSA): concatenation of h parallel
self-attention mechanisms 4/47



Challenges in Transformers: very large models

Computing self-attention is expensive for larger models

Mechanism Computation Memory

Self-Attention O(N2d) O(N2 + Nd)
MHSA O(N2d + Nd2) O(N2h + Nd)

with sequence length N, hidden size d , and h heads
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Challenges in Transformers: very large models

Transformers are big!

(source from Song Han)
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https://hanlab.mit.edu/songhan


Challenges in Kernel PCA

Given datapoints (xi)
N
i=1, feature map ϕ mapping into feature space

H associated to kernel k , and number of components s

Kernel PCA
Find orthonormal directions (wj)

s
j=1 ∈ Hs that give the best rank s

approximation of the empirical covariance in feature space

Challenges
Speed: solved by truncated SVD of the kernel matrix
G = [k(xi , xj)]

N
i,j=1 → not scalable

Robustness: KPCA only maximizes variance, how can we
robustify solutions ?

How can Kernel PCA help address efficiency and modelling
problems in Transformers?

Through asymmetric kernels...
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Kernel PCA

Corresponding paper:
Tonin, F., Lambert, A., Patrinos, P., & Suykens, J. (2023).

Extending Kernel PCA through Dualization: Sparsity, Robustness
and Fast Algorithms. ICML 2023.
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Kernel Principal Component Analysis (KPCA)

(reproduced from [Mik+99])

Nonlinear extension of PCA by:
Mapping input space to a high
dimensional feature space H
Linear PCA is performed in the
feature space induced by ϕ
Applying the kernel trick
Usual way to solve KPCA
[Sch+98]: top s eigenvectors of
kernel matrix G ∈ RN×N ⇒
slow with larger N
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LS-SVM approach to kernel PCA

LS-SVM formulation of KPCA with Lagrangian duality [Suy+02]
• Primal problem:

P min
w ,e

1
2
∥w∥2 − 1

2λ

N∑
i=1

e2
i s.t. ei = w⊤ϕ(xi)

• Lagrangian

L(w ,e;h) = 1
2λ

N∑
i=1

e2
i − 1

2
w⊤w −

N∑
i=1

hi

(
ei − wT (ϕ (xi))

)
• Elimination of w ,e in the optimality conditions gives

D Gh = λh,

with kernel trick Gij = ϕ(xi)
Tϕ(xj) = k(xi , xj)

12/47



KPCA as difference of convex functions

Alternative formulation: variance maximization under
orthonormality constraints

KPCA problem: sup
W∈Ss

H

1
2
∥ΓW∥2

F

� Key idea: Rewrite KPCA as difference of convex functions

Proposition: Dual of difference of convex functions
Let Ss

H be the Stiefel manifold of orthonormal s-frames in H, and
operator Γ: Hs → RN×s, ΓW = [⟨ϕ(xi),wj⟩]N,s

i,j=1. The problem

inf
W∈Hs

g(W )− f (ΓW )

admits the dual formulation

inf
H∈RN×s

f ⋆(H)− g⋆(Γ♯H)

and strong duality holds. 13/47



Solving the dual of KPCA

For the KPCA problem: f =
1
2
∥·∥2

F and g = ιSs
H

Dual problem to KPCA

inf
H∈RN×s

1
2
Tr(H⊤H)− Tr

√
H⊤GH︸ ︷︷ ︸

:=π(H)

Computing ∇π is possible:

∇π(H) = GHU⊤diag

(
1√

λ(H⊤GH)

)
U

where U comes from the SVD of H⊤GH. Complexity:
Computation of H⊤GH in O(sN2),
SVD of H⊤GH in O(s3).

Consequences:
SVD of H⊤GH is cheap
Can be solved with gradient-based algorithms
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Experiments: faster KPCA

We solve our dual problem with L-BFGS and compare training time
with full SVD, Lanczos method, and Randomized SVD (RSVD).

KPCA Training Time for multiple KPCA problems with fixed
δ = 10−2 accuracy. Speedup factor w.r.t. RSVD.

Task N
Time (s) Speedup

SVD Lanczos RSVD Ours Factor

Synth 1 7000 96.73 0.85 1.97 0.53 3.72
Protein 14895 868.64 3.46 6.70 1.07 6.25
RCV1 20242 - 6.04 12.50 2.12 5.90
CIFAR-10 60000 - 48.10 123.89 13.51 9.17
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Beyond variance maximization

Typical loss function:
1
2
∥·∥2

F → " Sensible to outliers

Modified loss: L =
1
2
∥·∥2 □ Ψ

New KPCA objective:
sup

W∈Ss
H

L(ΓW )

With dual problem

inf
H∈RN×s

1
2
Tr(H⊤H)+ Ψ⋆(H)− π(H)

Ψ enforces desired properties of the solution, e.g., robustness or
sparsity
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Solving the dual problem

Use the DC algorithm [Tao+97], with current iterate H(t)

Y = ∇π(H(t))

H(t+1) = proxΨ⋆(Y )

Enforce robustness by extended Huber loss

Hp
κ :=

1
2
∥·∥2 □ κ ∥·∥p

Fenchel conjugate of the p-norm is the indicator of q-ball, thus

Ψ := κ ∥·∥p , Ψ⋆ = ιBq
κ
, proxΨ⋆(Y ) = ProjBq

κ
(Y ).

Effect: the coefficients H are forced to pertain to a certain ball
(robustness)
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Kernel SVD

Corresponding paper:
Tao, Q.*, Tonin, F.*, Chen, Y., Patrinos, P., & Suykens, J. (2023).
Nonlinear SVD with Asymmetric Kernels: feature learning and

asymmetric Nyström method. arXiv:2306.07040.
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SVD vs. KPCA

Singular Value Decomposition of A ∈ RN×M

A = UΣV⊤

Two sets of orthonormal eigenbases U,V
KPCA of data matrix A

Samples are the rows of A: {xi ∈ RM}N
i=1

Eigendecomposition of kernel matrix Gij = k(xi , xj), with
symmetric kernel k
One set of eigenbases

Research Question: How to extend SVD to a nonlinear form
through asymmetric kernels?
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Problem Formulation

Given a data matrix
A ∈ RN×M , it can be seen as
an array w.r.t. either rows or
columns:

X = {A[i , :] ≜ xi}N
i=1

Z = {A[:, j] ≜ zj}M
j=1

SVD gives two sets of
embeddings for both X and Z

KPCA provides only one set
of features to rows X
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Figure: Example of asymmetric
similarity in directed graphs.
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Kernel SVD: variational principle

Instead of working with only one feature map of xi as in KPCA, we
apply two maps ϕ : RM → Rp, ψ : RN → Rp to both xi and zj :

xi ∈ RM 7→ ϕ(xi) ∈ Rp, zj ∈ RN 7→ ψ(zj) ∈ Rp.

KSVD Primal problem [Suy16]:

P max
We,Wr ,ei ,rj

J =
1
2

N∑
i=1

e⊤
i Λei +

1
2

M∑
j=1

r⊤j Λrj − Tr
(

W⊤
e Wr

)
s.t. ei = W⊤

e ϕ(xi), i = 1, . . . ,N,
rj = W⊤

r ψ(zj), j = 1, . . . ,M
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Kernel SVD: asymmetric kernels

• Lagrangian

L(We,Wr ,ei , rj ,hei ,hrj ) = J −
N∑

i=1

h⊤
ei

(
ei − W⊤

e ϕ(xi)
)
−

M∑
j=1

h⊤
rj

(
rj − W⊤

r ψ(zj)
)

• Writing the conditions for optimality and eliminating We,Wr ,ei , rj
gives the shifted eigenvalue problem

D

[
φ (xi)

T ψ
(
zj
)]

Hr = HeΛ̃[
ψ
(
zj
)T
φ (xi)

]
He = Hr Λ̃

Asymmetric kernel

The asymmetric kernel κ : RM × RN → R is defined by the inner
product of two feature mappings:

κ(x , z) = ⟨ϕ(x), ψ(z)⟩ , ∀x ∈ RM , z ∈ RN ,

where the output spaces of ϕ, ψ are compatible in dimensionality.
22/47



KSVD: solution

Asymmetric N × M kernel matrix Gij = ϕ(xi)
⊤ψ(zj) = κ(xi , zj):

D
G Hr = HeΛ̃

G⊤He = Hr Λ̃

Lanczos’ decomposition theorem

Any non-zero rank-r matrix A can be written as A = ŨΣ̃Ṽ⊤, with
matrices Ũ, Σ̃, Ṽ defined by the shifted eigenvalue problem:

AṼ = ŨΣ̃,

A⊤Ũ = Ṽ Σ̃,

where Ũ ∈ RN×r and Ṽ ∈ RM×r satisfy Ũ⊤Ũ = Ir and Ṽ⊤Ṽ = Ir ,
and Σ̃ ∈ Rr×r is a positive definite diagonal matrix.

Consequence: the KSVD solution is obtained by the SVD on
the asymmetric kernel matrix G 23/47



KSVD: model representation

Model-based approach with two representations

M

P
e(x) = W⊤

e ϕ(x)
r(z) = W⊤

r ψ(z)

D

e(x) =
M∑

j=1

hrjκ(x , zj)

r(z) =
N∑

i=1

heiκ(xi , z).
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Primal-Attention

Corresponding paper:
Chen, Y.*, Tao, Q.*, Tonin, F., & Suykens, J. (2023).

Primal-Attention: Self-attention through Asymmetric Kernel SVD in
Primal Representation. NeurIPS 2023.
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Self-attention is asymmetric

Attention matrix can be seen
as kernel matrix
Previous works consider
symmetric kernels [Tsa+19;
Ngu+23]
However, attention is
asymmetric �
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Self-attention with asymmetric kernel

We define two feature maps
ϕq, ϕk related to queries and
keys
The asymmetric kernel for
self-attention is
κ(xi , xj) = ⟨ϕq(xi), ϕk (xj)⟩

27/47



Connecting self-attention and dual KSVD

Primal-dual representations of
KSVD in self-attention:

P
{

e(x) = W⊤
e ϕq(x)

r(x) = W⊤
r ϕk (x)

D


e(x) =

∑N

j=1
hrjκ(x , xj)

r(x) =
∑N

i=1
heiκ(xi , x)

The values play the role of
the right singular vectors of the
attention matrix v(xj) =: hrj

Canonical self-attention only
outputs e

28/47



Primal-Attention

Primal-dual representation of KSVD in self-attention:

P
{

e(x) = W⊤
e ϕq(x)

r(x) = W⊤
r ϕk (x)

, D

 e(x) =
∑N

j=1
hrjκ(x , xj)

r(x) =
∑N

i=1
heiκ(xi , x).

Primal-Attention: leveraging primal representation with ϕq, ϕk :

oi := [ei ; ri ] =
[
W⊤

e ϕq(xi);W⊤
r ϕk (xi)

]
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Primal-Attention

Primal-dual representation of KSVD in self-attention:

P
{

e(x) = W⊤
e ϕq(x)

r(x) = W⊤
r ϕk (x)

, D

 e(x) =
∑N

j=1
hrjκ(x , xj)

r(x) =
∑N

i=1
heiκ(xi , x).

Primal-Attention: leveraging primal representation with ϕq, ϕk :

oi := [ei ; ri ] =
[
W⊤

e ϕq(xi);W⊤
r ϕk (xi)

]
In experiments we use cosine similarity kernel

ϕq(x) := q(x)/∥q(x)∥2 ϕk (x) := k(x)/∥k(x)∥2
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Primal-Attention

Primal-dual representation of KSVD in self-attention:

P
{

e(x) = W⊤
e ϕq(x)

r(x) = W⊤
r ϕk (x)

, D

 e(x) =
∑N

j=1
hrjκ(x , xj)

r(x) =
∑N

i=1
heiκ(xi , x).

Primal-Attention: leveraging primal representation with ϕq, ϕk :

oi := [ei ; ri ] =
[
W⊤

e ϕq(xi);W⊤
r ϕk (xi)

]
� Result: time complexity reduced from O(N2dv ) to O(Nps)
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Primal-Attention objective

The Primal-Attention objective combines the task-oriented loss L
and the KSVD primal objective Jl

JPrimalAtt = L + η
∑

l
J2

l ,

where the second term adds objectives of all Primal-Attention
blocks and Jl is implemented as mean over all heads

Jl(We,Wr ,Λ) =
1
2

N∑
i=1

e⊤
i Λei +

1
2

N∑
j=1

r⊤j Λrj − Tr
(

W⊤
e Wr

)
=

1
2

N∑
i=1

∥(WeΛ
1
2 )⊤ϕq(xi)∥2

2 +
1
2

N∑
j=1

∥(WrΛ
1
2 )⊤ϕk (xj)∥2

2 − Tr
(

W⊤
e Wr

)
.

Motivated by

Lemma (A zero-value objective with stationary solutions)
The solutions to the KSVD shifted eigenvalue problem in the dual
representation lead to the zero-value primal objective Jl . 32/47



Experiments: higher reward in D4RL

D4RL benchmark: offline RL performance for continuous robot
control tasks
Three different environments: HalfCheetah, Hopper and Walker,
under three policies: Medium-Expert, Medium and Medium-Replay

Dataset Environment
DT Linear. Re. Per. Cos. Flow. Ours

Medium
-Expert

HalfCheetah 83.8±3.3 78.2±3.2 81.5±1.6 85.1±2.1 85.5±2.9 90.8±0.4 77.8±22.1
Hopper 104.0±2.5 107.2±0.9 104.2±9.8 93.5±13.9 98.1±7.4 109.9±1.0 111.5±0.2
Walker 107.7±0.6 67.2±27.3 71.4±1.8 72.6±2.4 100.5±14.5 108.0±0.4 108.9±0.1

Medium
HalfCheetah 42.4±0.1 42.3±0.2 42.2±0.1 42.1±0.2 42.1±0.3 42.2±0.2 43.0±0.0

Hopper 64.2±1.1 58.7±0.4 59.9±0.7 59.7±7.5 59.8±3.8 66.9±2.5 74.5±0.6
Walker 70.6±3.2 57.9±10.6 65.8±4.9 63.3±10.7 71.4±1.2 71.7±2.5 77.9±7.8

Medium
-Replay

HalfCheetah 34.6±0.6 32.1±1.5 33.6±0.7 31.7±0.9 32.8±3.6 34.7±1.5 38.9±0.4
Hopper 79.7±7.4 74.3±7.0 66.1±2.6 64.6±24.2 59.3±16.5 75.5±14.5 88.5±12.5
Walker 62.9±5.0 62.1±7.4 50.1±3.5 61.3±6.7 60.5±9.9 62.0±3.1 76.8±10.3

Average Reward 72.2±2.6 64.4±6.5 63.9±2.9 63.8±7.6 67.8±7.6 73.5±2.9 77.5±6.0
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Experiments: large-scale language modelling

Language modelling on WikiText-103. 157M parameters

6 layers, 512 attention channels, 2048 FC channels, 267744
dictionary size → 6(4 · 5122 + 2 · 512 · 2048) + 512 · 267744

Models grow large quickly...

Model Perplexity Time (s/1K-steps) Memory (GB)

Transformer 33.0 3108.4 9.0
Flowformer 30.8 3998.4 10.5
Primal+Trans. 31.0 3104.0 8.9
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Conclusion
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Take home message

Primal-dual model representations are powerful
Faster KPCA algorithm and convolution with p-norms induces
robustness
Primal-dual representation of self-attention through KSVD
avoids computing attention matrix
Primal-Attention: higher accuracy & efficiency
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Future perspectives

Robust KSVD through dualization of difference of convex
functions

Uncertainty estimation in Transformers

Compressing LLMs for faster inference/adaptation through
low-rank properties
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Future perspectives

Robust KSVD through dualization of difference of convex
functions → robust self-attention ?
Uncertainty estimation in Transformers

Would you trust a system that says it’s unreliable?

Compressing LLMs for faster inference/adaptation through
low-rank properties
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Future perspectives
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