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Core framework behind a series of three papers
@ Faster and robust/sparse Kernel PCA [Ton+23]
@ Nonlinear SVD through asymmetric kernels [Tao+23]
@ New representation of self-attention in Transformer [Che+23] ,,,



High-level look on Transformer: introduction

Transformer as Multi-layer encoder

Transformer Encoder
autoencoder and decoder

block

Vision Transformer (ViT)
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https://jalammar.github.io/illustrated-transformer/

High-level look on Transformer: self-attention

Queries, keys, values as
linear projections of the
input sequence:
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(source from [Chi+23])

Self-Attention

Attention(Q, K, V) = softmax <Q—KT> %
O Vi

Multi-Head Self-Attention (MHSA): concatenation of h parallel
self-attention mechanisms
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Challenges in Transformers: very large models

Computing self-attention is expensive for larger models

Mechanism Computation Memory

Self-Attention O(N?d) O(N? + Nd)
MHSA O(N?d + Nd?)  O(N?h + Nd)

with sequence length N, hidden size d, and h heads
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Challenges in Transformers: very large models

Transformers are big!

Model Size (#Params in Billion)

180
NLP model size is increasing exponentially OpenAl
144 GPT-3
170B
108
72
® n\a‘ll.“)'i.;.\ B2 Microsoft
36 Google OpenaT 2209 OpenAL 1o gsironLM T-NLG
BERT GPT-2,..+"
Transformer GPT B g 8.3B 178
0 0.05B 0.11B s 158
2017 2018 2020 2021

Year

(source from Song Han)
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https://hanlab.mit.edu/songhan

Challenges in Kernel PCA

Given datapoints (x,-)f\;, feature map ¢ mapping into feature space
JH associated to kernel k, and number of components s

Kernel PCA

Find orthonormal directions (w))i_; € 3(° that give the best rank s
approximation of the empirical covariance in feature space

Challenges
@ Speed: solved by truncated SVD of the kernel matrix
G = [k(x;, X))]Yi—4 — not scalable
@ Robustness: KPCA only maximizes variance, how can we
robustify solutions ?
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Kernel PCA
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Challenges
@ Speed: solved by truncated SVD of the kernel matrix
G = [k(x;, X))]Yi—4 — not scalable
@ Robustness: KPCA only maximizes variance, how can we
robustify solutions ?

How can Kernel PCA help address efficiency and modelling
problems in Transformers?
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Challenges in Kernel PCA

Given datapoints (x,-)f\;, feature map ¢ mapping into feature space
JH associated to kernel k, and number of components s

Kernel PCA

Find orthonormal directions (w))i_; € 3(° that give the best rank s
approximation of the empirical covariance in feature space

Challenges
@ Speed: solved by truncated SVD of the kernel matrix
G = [k(x;, X))]Yi—4 — not scalable
@ Robustness: KPCA only maximizes variance, how can we
robustify solutions ?

How can Kernel PCA help address efficiency and modelling
problems in Transformers?

Through asymmetric kernels...
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Kernel PCA

Corresponding paper:
Tonin, F., Lambert, A., Patrinos, P., & Suykens, J. (2023).
Extending Kernel PCA through Dualization: Sparsity, Robustness
and Fast Algorithms. ICML 2023.
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Kernel Principal Component Analysis (KPCA)

Nonlinear extension of PCA by:

Kernel PCA Tinear PCA @ Mapping input space to a high
S R dimensional feature space H

@ Linear PCA is performed in the
feature space induced by ¢

@ Applying the kernel trick

@ Usual way to solve KPCA
[Sch+98]: top s eigenvectors of
kernel matrix G € RV*N =
slow with larger N

(reproduced from [Mik+99])
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LS-SVM approach to kernel PCA

LS-SVM formulation of KPCA with Lagrangian duality [Suy+02]
e Primal problem:

N
o1 1
P] ijgl\wl\z—z)\z;e,? st e =w'o(x)
=
e Lagrangian
L(w, e h) = ZAZe —wTw - zh (=W (2(x)))

¢ Elimination of w, e in the optimality conditions gives

D] Gh=xh,

with kernel trick G;; = ¢(x,-)T<;5(x,-) = K(xi, x;)
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KPCA as difference of convex functions

Alternative formulation: variance maximization under
orthonormality constraints

1
KPCA problem: sup = |]FW||12;
Wess, 2

¢ Key idea: Rewrite KPCA as difference of convex functions
Proposition: Dual of difference of convex functions

Let 85, be the Stiefel manifold of orthonormal s-frames in 3, and

operator I': H5 — RN*S TW = [(6(x)), wj>],'.f’j’j1. The problem

Jnf (W) — KT W)

admits the dual formulation

inf  F(H)— g (Ir'H
il (H) — g*(T*H)

and strong duality holds.
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Solving the dual of KPCA

]
For the KPCA problem: f = 7 I and g = us5,

Dual problem to KPCA

inf —Tr(HT H) —TrvVHTGH
——————

HeRNXS
=m(H)

Computing Vr is possible:

Vnr(H) = GHU " diag <1> U
AMHTGH)
where U comes from the SVD of H" GH. Complexity:
@ Computation of H" GH in O(sN?),
@ SVD of H' GH in O(s®).
Consequences:
@ SVD of H' GH is cheap

@ Can be solved with gradient-based algorithms a7



Experiments: faster KPCA

We solve our dual problem with L-BFGS and compare training time
with full SVD, Lanczos method, and Randomized SVD (RSVD).

KPCA Training Time for multiple KPCA problems with fixed
§ = 1072 accuracy. Speedup factor w.r.t. RSVD.

Task N Time (s) Speedup
SVD Lanczos RSVD Ours Factor

Synth 1 7000 96.73 0.85 1.97 0.53 3.72
Protein 14895 868.64 3.46 6.70 1.07 6.25
RCV1 20242 - 6.04 1250 2.12 5.90
CIFAR-10 60000 - 48.10 123.89 13.51 9.17
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Beyond variance maximization

1 . :
Typical loss function: 3 \|-||§ — A Sensible to outliers

1
Modified loss: L = 5 -2 0w

New KPCA objective:

sup L(T'W)
Wess,

With dual problem

. 1 T *
HéﬂgEXSETr(H H) + V*(H) — n(H)

WV enforces desired properties of the solution, e.g., robustness or
sparsity
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Solving the dual problem

Use the DC algorithm [Tao+97], with current iterate H(®
e Y =vn(HY)
o HY) = proxy.(Y)

Enforce robustness by extended Huber loss
H2 = L IH2D
kT 5 p
Fenchel conjugate of the p-norm is the indicator of g-ball, thus
Ve=k-,, V* = 10, proxy.(Y) = Projza (Y).

Effect: the coefficients H are forced to pertain to a certain ball
(robustness)
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Kernel SVD

Corresponding paper:
Tao, Q.%, Tonin, F.*, Chen, Y., Patrinos, P., & Suykens, J. (2023).
Nonlinear SVD with Asymmetric Kernels: feature learning and
asymmetric Nystrom method. arXiv:2306.07040.
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SVD vs. KPCA

@ Singular Value Decomposition of A € RV*M
e A=UxVT
o Two sets of orthonormal eigenbases U, V
@ KPCA of data matrix A
o Samples are the rows of A: {x; ¢ RM}N,
e Eigendecomposition of kernel matrix Gj = k(x;, x;), with
symmetric kernel k
@ One set of eigenbases

@ Research Question: How to extend SVD to a nonlinear form
through asymmetric kernels?
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Problem Formulation

Given a data matrix

A € RVM it can be seen as
an array w.r.t. either rows or
columns:

o X ={Ali,]% x}V,
o Z={AJ]= Zj}jl\i1

SVD gives two sets of
embeddings for both X and Z

KPCA provides only one set
of features to rows X'

V1VaV3 Uy

v
vifo205 ()
V23040 0205 0205
vsloooe © | guonano 3040
Va[0030 0006 0006
adjacency matrix 0030 0030

as source node as target node

//ﬁ e.g., nodev, . 2@
\// @f;}EB &

outgoing edges incoming edges
graph topology

Figure: Example of asymmetric
similarity in directed graphs.
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Kernel SVD: variational principle

Instead of working with only one feature map of x; as in KPCA, we
apply two maps ¢: RM — RP, ¢: RV — RP to both x; and z;:

xi € RM s ¢(x;) € RP,  z; € RN v 9(Z;) € RP.
KSVD Primal problem [Suy16]:
M
r

1 1
B g, I 3Serma s 13- (i)

i=1 j=1
st. e = WJo(x), i=1,...,N,

n=W'(z), j=1.....M
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Kernel SVD: asymmetric kernels
e Lagrangian

N M
‘C(Wt-% Wra el'7rj: henhfj) =J- Zh;r, (ef - WJ¢(XI)) - Zh;lr (rj - WrTiﬁ(Z/))
i1 =1

e Writing the conditions for optimality and eliminating We, W, e, 1;
gives the shifted eigenvalue problem

[90 ()" ¥ (zj)} H, = Hel
0(2)7 ¢ ()] He = HiA

Asymmetric kernel

The asymmetric kernel x : RY x RN — R is defined by the inner
product of two feature mappings:

k(x,2) = (p(x),¥(2)), VxeRM zeRN,

where the output spaces of ¢, ¢ are compatible in dimensionality.

v
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KSVD: solution

Asymmetric N x M kernel matrix G;; = ¢(X,-)Tw(zj) = r(X;, Z):

D]

G Hr = HeA
GTHe = Hr/hi

Lanczos’ decomposition theorem

Any non-zero rank-r matrix A can be written as A= UL VT, with
matrices U, ¥, V defined by the shifted eigenvalue problem:

AV = U5,
ATU = V%,

where U € RN*"and V € RM*" satisfy UTU = |, and V'V = Iy,
and > € R™" is a positive definite diagonal matrix.

@ Consequence: the KSVD solution is obtained by the SVD on
the asymmetric kernel matrix G 23/47



KSVD: model representation

Model-based approach with two representations

e(x) = Wg ¢(x)

P R

M M
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Primal-Attention

Corresponding paper:
Chen, Y.*, Tao, Q.*, Tonin, F., & Suykens, J. (2023).
Primal-Attention: Self-attention through Asymmetric Kernel SVD in
Primal Representation. NeurlPS 2023.
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Self-attention is asymmetric

N
Output: 0; = Z IV(I;)K(Ii,Ij),i =1,..,N
=

Asymmetric kemel @ Attention matrix can be seen
(Wox, Wiex;) # (Wyxj, Wix:) as kernel matrix
A k(2 x7) # (x5, %;) . .
" S @ Previous works consider
ttention weights as kernel values . .
symmetric kernels [Tsa+19;
ic(xi,x,-) = softmax((W},xi, WkXJ)/-\/dk) y [

t Ngu+23]

. @ However, attention is
Queries Values .
q(x;) = Wox; - v(x;) = Wox; asymmetric A
L J

)

Input sequence: x1,Xx3,..., Xy, X;€ R*
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Self-attention with asymmetric kernel

N
Output: 0; = Z IV(Ij)K(Ii,xj),i =1,..,N
j=

Asymmetric kernel
(Wyxi, Wiex;) # (Woxj, Wiex:)

@ We define two feature maps

A K(xi,%,) # re(x;, %) bq, ¢k related to queries and
Attention weights as kernel values keys
we(xi, ;) = softmax((Woxi, Wex;)//di) @ The asymmetric kernel for

,_T_\ self-attention is
Queries Values N(Xh X/) = <¢q(Xi)a ¢k()9)>
q(x;) = Wyx; v(x;) = Wx;

)

Input sequence: x1,Xx3,..., Xy, X;€ R*
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Connecting self-attention and dual KSVD

Primal-dual representations of

. =Z:'=1v(x,.)x i = 1, oo KSVD in self-attention:

¢ e(x) = W] 6q(x)
[P { ) = W, o (x)

Asymmetric kernel
(W x;, Wyex;) = (Wox;, Wiex;)

N
A k(2 %)) # k(x),%;) e(x) = Z » hijJ(X, X/)
Attention weights as kernel values Nj -
we(xi %) = softmax({Woxi, Wiex;)//di) r(x) = Z he,<(Xi, X)
i=

I—T—\ @ The values play the role of

q(,?;]im;fx. - v eme the right singular vectors of the
L ] attention matrix v(x;) =: hy,

i . @ Canonical self-attention only
Input sequence: xi, X3, ..., Xy, X;€E R
outputs e

28/47



Primal-Attention

Primal-dual representation of KSVD in self-attention:

N
e(x) = W, 6q(x) e(x) =Y hyr(x,x)
[P] { r(x) = W/ ¢x(x) ’ [0} { r(x)zz& he,5(Xi, X).

Primal-Attention: leveraging primal representation with ¢q, ¢:

0; = [eii il = | Wy éq(x): W, éx(x)
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Primal-Attention

Primal-dual representation of KSVD in self-attention:

T e(x)—ZN hr (X, X;)
o {e(x)zweczsq(x) 5] { (o1 P06

r(x) = W,/ é(x) r(x) = 2.71 he;k(Xi, X).

Primal-Attention: leveraging primal representation with ¢4, ¢x:
o = lej;r] = [WeTﬁbq(Xi); Wr—rﬁbk(xi)}
In experiments we use cosine similarity kernel

¢q(x) = a(x)/la()ll2  ¢k(x) := k(x)/[[k(x)ll2
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Primal-Attention

Primal-dual representation of KSVD in self-attention:
P { - Wiogx) g [ = 2/5_1 (. )
r(x) = W, ¢i(x) P00 =3 han(xi,X).
Primal-Attention: leveraging primal representation with ¢4, ¢x:
o; = [ej; ri] = [WeT%(Xi)? WrTﬁf’k(Xi)}

= Result: time complexity reduced from O(dev) to O(Nps)

Primal representation (ours)

E & 20 T X &
P e B B NG YN L s ONps)

&7 ' ! AN

: : - P @

i 53 [EEEE = P s EEEEE -gu

o [ -j E*E it i
: ERnmn 3 SO | L Wex Wrix
K= [rk(x,x)]  v(X) $q(X) RGO N $q(X) P (X)
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Primal-Attention objective

The Primal-Attention objective combines the task-oriented loss L
and the KSVD primal objective J,

Jprimaiatt = L + 772/ J27

where the second term adds objectives of all Primal-Attention
blocks and J; is implemented as mean over all heads

N N
(W, Wi A) = 5> 6l he;+ Z Arj — (WeT W,)
i=1 j:

N
Zn (Weh2) T oq(x)]3 + §Z|(Wrm ok ()13 — Tr (W3 W)

Motivated by

Lemma (A zero-value objective with stationary solutions)

The solutions to the KSVD shifted eigenvalue problem in the dual
representation lead to the zero-value primal objective J,.
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Experiments: higher reward in D4RL

D4RL benchmark: offline RL performance for continuous robot
control tasks

Three different environments: HalfCheetah, Hopper and Walker,
under three policies: Medium-Expert, Medium and Medium-Replay

. DT Linear. Re. Per. Cos. Flow. Ours
Dataset Environment

HalfCheetah 83.8+3.3 78.243.2 81.5+1.6 85.1+2.1 85.54+2.9 90.8+0.4 77.8+22.1
Hopper 104.0£2.5 107.2+0.9 104.2+9.8 93.5+13.9 98.1£74 109.9+1.0 111.5+0.2
Walker 107.7+0.6 67.2+27.3 71.4+18 72.6+24 100.5+14.5 108.0+0.4 108.9+0.1

HalfCheetah 42.4+0.1 42.3+0.2 42.2+0.1 42.1+0.2 42.1+0.3 42.2+0.2  43.0+0.0
Medium Hopper 64.2+1.1 58.7£04 59.9+0.7 59.7+7.5 59.84+3.8 66.9+2.5 74.5+0.6
Walker 70.6+3.2 57.9+10.6 65.8+4.9 63.3+10.7 71.4+1.2 71.74£25  77.9+7.8

HalfCheetah 34.6+0.6 32.1+1.5 33.6+0.7 31.7+0.9 32.8+3.6 347+1.5 38.9+0.4
Hopper 79.747.4 743+£7.0 66.1+26 64.6+24.2 59.3+16.5 75.5+14.5 88.5+125
Walker 62.9+5.0 62.1£74 50.1+£3.5 61.3+6.7 60.5+9.9 62.0+£3.1  76.8+10.3

Average Reward 722426 64.4+65 63.9+29 63.8+7.6 67.8+7.6 735429 77.5+6.0

Medium
-Expert

Medium
-Replay
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Experiments: large-scale language modelling

Language modelling on WikiText-103. 157M parameters

6 layers, 512 attention channels, 2048 FC channels, 267744
dictionary size — 6(4 - 5122 +2-512-2048) + 512 - 267744

Models grow large quickly...

Model Perplexity Time (s/1K-steps) Memory (GB)
Transformer 33.0 3108.4 9.0
Flowformer 30.8 3998.4 10.5

Primal+Trans. 31.0 3104.0 8.9
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Conclusion
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Take home message

Primal-dual model representations are powerful

@ Faster KPCA algorithm and convolution with p-norms induces
robustness

@ Primal-dual representation of self-attention through KSVD
avoids computing attention matrix

@ Primal-Attention: higher accuracy & efficiency
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Future perspectives

@ Robust KSVD through dualization of difference of convex
functions
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Future perspectives

@ Robust KSVD through dualization of difference of convex
functions — robust self-attention ?
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Future perspectives

@ Robust KSVD through dualization of difference of convex
functions — robust self-attention ?

@ Uncertainty estimation in Transformers
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Future perspectives

@ Robust KSVD through dualization of difference of convex
functions — robust self-attention ?

@ Uncertainty estimation in Transformers

Would you trust a system that says it's unreliable?

[ Preview | Bing is powered by Al, so surprises and mistakes are possible. Please share feedback so we can improve!
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Future perspectives

@ Robust KSVD through dualization of difference of convex
functions — robust self-attention ?

@ Uncertainty estimation in Transformers

@ Compressing LLMs for faster inference/adaptation through
low-rank properties
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