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Kernel PCA Problem
Given: n datapoints (xi)

n
i=1 ∈ Xn, feature map ϕ : X → H to a Hilbert

space H.
Goal: find s directions in H that maximize the variance under orthonor-
mal conditions. The KPCA optimization problem is

sup
W∈Ss

H

1

2
∥ΓW∥2F . (1)

We use the following definitions.

• The Stiefel manifold of orthonormal s-frames in H is

SsH := {W ∈ Hs | G(W ) = Is}.

• G(W ) ∈ Rs×s is the matrix such that G(W )ij = ⟨wi, wj⟩.

• Γ: Hs → Rn×s is the linear operator s.t. for all (i, j) ∈ [n× s] and
W = (w1, . . . , ws) ∈ Hs, [ΓW ]ij = ⟨ϕ(xi), wj⟩.

• G is the Gram matrix G = [k(xi, xj)]
n
i,j=1, where k : X× X → R is

the positive definite kernel function induced by ϕ.

The usual way to solve (1) is through SVD of G ⇒ slow with larger n.

Paper TL;DR
We propose a duality framework to solve the KPCA problem

faster, with extension to robust and sparse losses.

Difference of convex functions
Key idea: Rewrite (1) as a difference of convex functions

inf
W∈Hs

g(W )− f(ΓW ), (2)

with f = 1
2 ∥·∥

2
F, g = ιSs

H
(·), and ιC(·) the indicator function for set C.

Two key advantages:

1. Allows new gradient-based algorithm to solve KPCA efficiently
without the SVD of G.

2. It becomes possible to slightly modify the loss function f to enforce
specific properties such as robustness or sparsity.

Proposition 0.1 (Dual of difference of convex functions). Let U ,K
be two Hilbert spaces, g : U → R̄ and f : K → R̄ be two convex lower
semi-continuous functions and Γ ∈ L(U ,K). The problem

inf
W∈U

g(W )− f(ΓW )

admits the dual formulation

inf
H∈K

f⋆(H)− g⋆(Γ♯H),

and strong duality holds.

Faster KPCA with Gradient Descent
Motivation for going from primal to dual: we show that g⋆(Γ♯H)
is related to the nuclear norm of some low dimensional matrix.

Proposition 0.2. Let g be the indicator function of the Stiefel manifold
and Γ as in Problem 1. Then for all H ∈ Rn×s,

g⋆(Γ♯H) = Tr
√
H⊤GH =: π(H).

The computational complexity of computing the gradient of π:

• Computation of H⊤GH in O(sn2),

• SVD of H⊤GH in O(s3).

We solve our dual problem with L-BFGS and compare training time with
full SVD, Lanczos method, and Randomized SVD (RSVD).

• KPCA Training Time for multiple KPCA problems with fixed
δ = 10−2 accuracy. Speedup factor w.r.t. RSVD.

Task n
Time (s) Speedup

SVD Lanczos RSVD Ours Factor

Synth 1 7000 96.73 0.85 1.97 0.53 3.72
Protein 14895 868.64 3.46 6.70 1.07 6.25
RCV1 20242 - 6.04 12.50 2.12 5.90
CIFAR-10 60000 - 48.10 123.89 13.51 9.17

• Influence of the number of components s on training time: higher
s leads to longer training times.
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Beyond variance maximization
Typical loss function: square loss f = 1

2 ∥·∥
2
F.

Problems: sensible to outliers, no sparsity.
Key idea: use a loss obtained with infimal convolution

f =
1

2
∥·∥2F □ Ψ,

where Ψ is a well-chosen function that enforces robustness or sparsity.
Compatibility between the Fenchel-Legendre transform and the infimal
convolution operator then allows to write the dual to Equation (2) as

inf
H∈Rn×s

1

2
∥H∥2F +Ψ⋆(H)− π(H).

DC Optimization
As f is a Moreau envelope, its gradient is always defined for all Y ∈ Rn×s,

∇
(
1

2
∥·∥2F □Ψ

)
(Y ) = Y − proxΨ(Y ).

According to Moreau decomposition, it holds that for all Y ∈ Rn×s,

Y − proxΨ(Y ) = proxΨ⋆(Y ).

Algorithm 1 DCA for Moreau envelope objectives
input : Gram matrix G
for epoch t from 0 to T − 1 do

// alternating gradient steps
Y = ∇π(H(t))
H(t+1) = proxψ⋆(Y )

return H(T )

Robustness and sparsity
Denoting ∥·∥⋆ as the dual norm of ∥·∥ and the balls of radius t for these
norms as B⋆t and Bt, we extend KPCA with Huber and ϵ-insensitive
objectives to promote robustness and sparsity, respectively.

Extended Huber loss Hκ:

Ψ := κ ∥·∥ , Ψ⋆ = ιB⋆
κ
, proxΨ⋆(Y ) = ProjB⋆

κ
(Y ).

• Effect of κ for the losses H2
κ, H

1
κ on contaminated Iris dataset.
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Extended ϵ-insensitive loss ℓϵ:

Ψ := ιBϵ
, Ψ⋆ = ϵ ∥·∥⋆ , proxΨ⋆(Y ) = Y − ProjBϵ

(Y ).

• Reconstruction error for the ℓ∞ϵ loss for multiple ϵ and s.
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