KU LEUVEN

Extending Kernel PCA through Dualization: Sparsity, Robustness and Fast Algorithms

Francesco Tonin, Alex Lambert, Panagiotis Patrinos, Johan Suykens ESAT, KU Leuven, Belgium

Kernel PCA Problem

Given: n datapoints $\left(x_{i}\right)_{i=1}^{n} \in \mathcal{X}^{n}$, feature map $\phi: \mathcal{X} \rightarrow \mathcal{H}$ to a Hilbert space \mathcal{H}.
Goal: find s directions in \mathcal{H} that maximize the variance under orthonormal conditions. The KPCA optimization problem is

$$
\begin{equation*}
\sup _{W \in \mathcal{S}_{\mathfrak{H}}^{s}} \frac{1}{2}\|\Gamma W\|_{\mathrm{F}}^{2} . \tag{1}
\end{equation*}
$$

We use the following definitions.

- The Stiefel manifold of orthonormal s-frames in \mathcal{H} is

$$
\mathcal{S}_{\mathcal{H}}^{s}:=\left\{W \in \mathcal{H}^{s} \mid \mathcal{G}(W)=I_{s}\right\} .
$$

- $\mathcal{G}(W) \in \mathbb{R}^{s \times s}$ is the matrix such that $\mathcal{G}(W)_{i j}=\left\langle w_{i}, w_{j}\right\rangle$.
- $\Gamma: \mathcal{H}^{s} \rightarrow \mathbb{R}^{n \times s}$ is the linear operator s.t. for all $(i, j) \in[n \times s]$ and $W=\left(w_{1}, \ldots, w_{s}\right) \in \mathcal{H}^{s},[\Gamma W]_{i j}=\left\langle\phi\left(x_{i}\right), w_{j}\right\rangle$.
- G is the Gram matrix $G=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n}$, where $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is the positive definite kernel function induced by ϕ.

The usual way to solve (1) is through SVD of $G \Rightarrow$ slow with larger n.
Paper TL;DR

We propose a duality framework to solve the KPCA problem faster, with extension to robust and sparse losses.

Difference of convex functions

Key idea: Rewrite (1) as a difference of convex functions

$$
\begin{equation*}
\inf _{W \in \mathcal{H}^{s}} g(W)-f(\Gamma W) \tag{2}
\end{equation*}
$$

with $f=\frac{1}{2}\|\cdot\|_{\mathrm{F}}^{2}, g=\iota_{\mathcal{S}_{\mathscr{H}}}(\cdot)$, and $\iota_{\mathcal{C}}(\cdot)$ the indicator function for set \mathcal{C} Two key advantages:

1. Allows new gradient-based algorithm to solve KPCA efficiently without the SVD of G.
2. It becomes possible to slightly modify the loss function f to enforce specific properties such as robustness or sparsity.

Proposition 0.1 (Dual of difference of convex functions). Let \mathcal{U}, \mathcal{K} be two Hilbert spaces, $g: \mathcal{U} \rightarrow \overline{\mathbb{R}}$ and $f: \mathcal{K} \rightarrow \overline{\mathbb{R}}$ be two convex lower semi-continuous functions and $\Gamma \in \mathcal{L}(\mathcal{U}, \mathcal{K})$. The problem

$$
\inf _{W \in \mathcal{U}} g(W)-f(\Gamma W)
$$

admits the dual formulation

$$
\inf _{H \in \mathcal{K}} f^{\star}(H)-g^{\star}\left(\Gamma^{\sharp} H\right),
$$

and strong duality holds

Faster KPCA with Gradient Descent

Motivation for going from primal to dual: we show that $g^{\star}\left(\Gamma^{\sharp} H\right)$ is related to the nuclear norm of some low dimensional matrix.
Proposition 0.2. Let g be the indicator function of the Stiefel manifold and Γ as in Problem 1. Then for all $H \in \mathbb{R}^{n \times s}$,

$$
g^{\star}\left(\Gamma^{\sharp} H\right)=\operatorname{Tr} \sqrt{H^{\top} G H}=: \pi(H) .
$$

The computational complexity of computing the gradient of π :

- Computation of $H^{\top} G H$ in $\mathcal{O}\left(s n^{2}\right)$,
- SVD of $H^{\top} G H$ in $\mathcal{O}\left(s^{3}\right)$.

We solve our dual problem with L-BFGS and compare training time with full SVD, Lanczos method, and Randomized SVD (RSVD)

- KPCA Training Time for multiple KPCA problems with fixed $\delta=10^{-2}$ accuracy. Speedup factor w.r.t. RSVD.

Task	n	Time (s)				Speedup
		SVD	Lanczos	RSVD	Ours	Factor
Synth 1		96.73	0.85	1.97	$\mathbf{0 . 5 3}$	3.72
Protein	14895	868.64	3.46	6.70	$\mathbf{1 . 0 7}$	6.25
RCV1	20242	-	6.04	12.50	$\mathbf{2 . 1 2}$	5.90
CIFAR-10	60000	-	48.10	123.89	$\mathbf{1 3 . 5 1}$	9.17

- Influence of the number of components s on training time: higher s leads to longer training times.

Beyond variance maximization

Typical loss function: square loss $f=\frac{1}{2}\|\cdot\|_{\mathrm{F}}^{2}$.
Problems: sensible to outliers, no sparsity.
Key idea: use a loss obtained with infimal convolution

$$
f=\frac{1}{2}\|\cdot\|_{F}^{2} \square \Psi
$$

where Ψ is a well-chosen function that enforces robustness or sparsity Compatibility between the Fenchel-Legendre transform and the infimal convolution operator then allows to write the dual to Equation (2) as

$$
\inf _{H \in \mathbb{R}^{n \times s}} \frac{1}{2}\|H\|_{\mathrm{F}}^{2}+\Psi^{\star}(H)-\pi(H) .
$$

DC Optimization

As f is a Moreau envelope, its gradient is always defined for all $Y \in \mathbb{R}^{n \times s}$,

$$
\nabla\left(\frac{1}{2}\|\cdot\|_{\mathrm{F}}^{2} \square \Psi\right)(Y)=Y-\operatorname{prox}_{\Psi}(Y)
$$

According to Moreau decomposition, it holds that for all $Y \in \mathbb{R}^{n \times s}$,

$$
Y-\operatorname{prox}_{\Psi}(Y)=\operatorname{prox}_{\Psi^{\star}}(Y)
$$

Algorithm 1 DCA for Moreau envelope objectives

input : Gram matrix G
for epoch t from 0 to $T-1$ do
// alternating gradient steps
$Y=\nabla \pi\left(H^{(t)}\right)$
$H^{(t+1)}=\operatorname{prox}_{\psi^{\star}}(Y)$
return $H^{(T)}$

Robustness and sparsity

Denoting $\|\cdot\|_{\star}$ as the dual norm of $\|\cdot\|$ and the balls of radius t for these norms as \mathcal{B}_{t}^{\star} and \mathcal{B}_{t}, we extend KPCA with Huber and ϵ-insensitive objectives to promote robustness and sparsity, respectively Extended Huber loss H_{κ}

$$
\Psi:=\kappa\|\cdot\|, \quad \Psi^{\star}=\iota_{\mathcal{B}_{k}^{\star}}, \quad \operatorname{prox}_{\Psi^{\star}}(Y)=\operatorname{Proj}_{\mathcal{B}_{\kappa}^{\star}}(Y) .
$$

- Effect of κ for the losses $H_{\kappa}^{2}, H_{\kappa}^{1}$ on contaminated Iris dataset.

Extended ϵ-insensitive loss ℓ_{ϵ} :

$$
\Psi:=\iota_{\mathcal{B}_{\epsilon}}, \quad \Psi^{\star}=\epsilon\|\cdot\|_{\star}, \quad \operatorname{prox}_{\Psi^{\star}}(Y)=Y-\operatorname{Proj}_{\mathcal{B}_{\epsilon}}(Y) .
$$

- Reconstruction error for the ℓ_{ϵ}^{∞} loss for multiple ϵ and s

