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space and H is the latent subspace. Then, the threshold 7 is selected such that the scores

o of 95% of training points are below the threshold value. Lastly, in the evaluation phase, a FPRO5(1) 75.73 (2 7) 0.38 (0'2) 75.97 (11 1) 99.99 2.67 (1'0)
test sample x; is passed through the model and its energy score is calculated. If the score is MNIST  AUROC(t) 69.44 ( ) 99.70 (0-1) 78.05 (4 9) 73.17 99.36 (0-1)
below/above the threshold, the test point is flagged as in/out-of-distribution sample. AU PR(T) 66.26 (3.0) 99.75 (0.1) 80.36 (4.0) 83.73  99.44 (0.1)
broposed energy functions FPRO5(}) 99.21 (0.8) 2.71 (27) 96.23 (3.6) 99.79  69.43 (2.3)
dSprites AUROC ) 11.61 (3.1)  99.17 (0.4) 63.68 (7.5) 82.81  85.77 (0.8)
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classifier and an erroneous prediction is made. Instead, FPRO5(1) 0.34 (0.01) 13.40 (5.7) 46.97 (10.4) 65.76  6.50 (2.8)
we would like the ML system to produce a warning that Input space Latent space CIFAR-10 AUROC(1) 99.76 (0.003) 97.70 (0.8) 90.60 (2.5) 67.86  98.63 (0.4)

AUPR(1) 99.83 (0.003) 98.08 (0.6) 91.77 (2.0) 60.69  98.83 (0.3)

Table: Comparison of OOD detection performance. Lower scores (/) are better for FPR95 and higher
scores (1) are better for AUROC and AUPR. [S] Supervised / [U] Unsupervised.

the given input is out of distribution.

OOD Detection Task

Consider a training dataset D" drawn i.i.d. from
a data distribution P (the in-distribution). Let Q be
an unknown distribution (the out-distribution), from
which anomalous examples D:*" are drawn.

The out-of-distribution (OOD) detection task

Metric St-RKM variants VRAE GAN

EFuIlEnergy EkPCAError
FPRO5()) 6.18 (0.2) 98.45 (1.7) 6.27 (0.3) 87.45 (19.1)
AUROC(1) 94.02 (0.1) 50.39 (1.8) 93.89 (0.2) 37.08 (29.9)
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the EryliEnergy becomes more relevant to flag OOD samples.

International Joint Conference on Neural Networks (IJCNN), 2021.



