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Motivation

▶ Deploying Deep Learning classifiers in an open-
world setting is not trivial: how to detect test
samples that do not belong to the training distri-
bution?

▶ Requirement in safety-critical applications: ML
systems should flag potentially anomalous test
samples so that erroneous predictions.

Example

Cat vs Dog Classifier

In the open-world setting, the test distribution can be
very different from the training distribution. A user
might input an image of an elephant to a cat-vs-dog
classifier and an erroneous prediction is made. Instead,
we would like the ML system to produce a warning that
the given input is out of distribution.

OOD Detection Task

Consider a training dataset Dtrain
in drawn i.i.d. from

a data distribution P (the in-distribution). Let Q be
an unknown distribution (the out-distribution), from
which anomalous examples Dtest

out are drawn.
The out-of-distribution (OOD) detection task
involves computing an anomaly score s(x) ∈ R, where
x ∈ RD is a test sample.

Proposed approach

▶ New energy-based OOD detector leveraging the St-RKM: the model pa-
rameters are learned in an unsupervised manner via manifold optimiza-
tion where the interconnection matrix U lies on the Stiefel manifold.

▶ We propose multiple energy function definitions.

Figure: Proposed pipeline of training and detection of OOD points: first, the model is
trained on the in-distribution dataset with the full energy function, where F is the feature
space and H is the latent subspace. Then, the threshold γ is selected such that the scores
of 95% of training points are below the threshold value. Lastly, in the evaluation phase, a
test sample xi is passed through the model and its energy score is calculated. If the score is
below/above the threshold, the test point is flagged as in/out-of-distribution sample.

Proposed energy functions

EFullEnergy(x) =∥h∥22 − 2ϕ⊤θ⋆(x)U
⋆h + ∥ϕθ⋆(x)∥22

+ λLξ⋆,U⋆(x, ϕθ⋆(x)),

EkPCAError(x) = ∥h∥22 − 2ϕ⊤θ⋆(x)U
⋆h + ∥ϕθ⋆(x)∥22.

x1

xn
x3

x2

x

x̃

ϕθ(x1)

ϕθ(x2)

ϕθ(x3)
ϕθ(xn)

ϕθ(x)

h

Input space

RD

Rℓ

ϕθ(·)

ψξ(·) range(U)

Latent space

PU

u1

u2

Figure: Illustration with Dtrain
in = Fashion-MNIST and Dtest

out = {CIFAR-10, MNIST}. For
datasets whose distribution is closer to Fashion-MNIST, the AutoEncoder error is smaller
(norm of the dashed line). Hence, the KPCA reconstruction error (norm of the solid line
in latent space) becomes a more relevant metric for detecting OOD samples. For datasets
whose distribution is dissimilar such as CIFAR-10, both the errors are significant and, hence,
the EFullEnergy becomes more relevant to flag OOD samples.

Figure: Distribution of the energy scores when the
in/out-distributions are from the same dataset.
Dtrain

in is the training set of Fashion-MNIST and
Dtest

out is the test set of the same dataset.

Figure: Samples from the test set of Fashion-
MNIST (first row), MNIST (second row), and
CIFAR-10 (third row) that are flagged as OOD by
our method, illustrating that these samples often
show unusual features.

Dtrain
in : Fashion-MNIST [Mean (Std) over 10 iterations, values in %]

Dtest
out Metric

St-RKM variants [U]
Liu2020 [S] PCA [U] VAE [U]

EFullEnergy EkPCAError

MNIST
FPR95(↓) 75.73 (2.7) 0.38 (0.2) 75.97 (11.1) 99.99 2.67 (1.0)
AUROC(↑) 69.44 (1.5) 99.70 (0.1) 78.05 (4.9) 73.17 99.36 (0.1)
AUPR(↑) 66.26 (3.0) 99.75 (0.1) 80.36 (4.0) 83.73 99.44 (0.1)

dSprites
FPR95(↓) 99.21 (0.8) 2.71 (2.7) 96.23 (3.6) 99.79 69.43 (2.3)
AUROC(↑) 11.61 (3.1) 99.17 (0.4) 63.68 (7.5) 82.81 85.77 (0.8)
AUPR(↑) 0.71 (0.02) 92.82 (2.9) 20.82 (8.2) 70.89 36.87 (6.1)

SVHN
FPR95(↓) 1.34 (0.2) 28.64 (10.1) 29.14 (8.9) 75.31 27.42 (6.1)
AUROC(↑) 99.59 (0.04) 95.61 (1.3) 94.04 (2.0) 51.36 94.56 (1.3)
AUPR(↑) 99.23 (0.1) 93.00 (1.8) 88.52 (3.3) 25.57 89.76 (2.4)

CIFAR-10
FPR95(↓) 0.34 (0.01) 13.40 (5.7) 46.97 (10.4) 65.76 6.50 (2.8)
AUROC(↑) 99.76 (0.003) 97.70 (0.8) 90.60 (2.5) 67.86 98.63 (0.4)
AUPR(↑) 99.83 (0.003) 98.08 (0.6) 91.77 (2.0) 60.69 98.83 (0.3)

Table: Comparison of OOD detection performance. Lower scores (↓) are better for FPR95 and higher
scores (↑) are better for AUROC and AUPR. [S] Supervised / [U] Unsupervised.

Metric
St-RKM variants

VRAE GAN
EFullEnergy EkPCAError

FPR95(↓) 6.18 (0.2) 98.45 (1.7) 6.27 (0.3) 87.45 (19.1)

AUROC(↑) 94.02 (0.1) 50.39 (1.8) 93.89 (0.2) 37.08 (29.9)

AUPR(↑) 95.62 (0.2) 85.67 (0.2) 95.71 (0.2) 78.94 (9.6)

Table: Comparison of OOD detection performance in time series data of electrocardiogram (ECG)
sequences. All values are in percentages.
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