Publications and Preprints
Membership Inference Attacks against Large Vision-Language Models (NeurIPS 2024)
Zhan Li, Yongtao Wu, Yihang Chen, Francesco Tonin, Elias Abad Rocamora, Volkan Cevher [paper]
HeNCler: Node Clustering in Heterophilous Graphs through Learned Asymmetric Similarity (preprint)
Sonny Achten, Francesco Tonin, Volkan Cevher, Johan A. K. Suykens [paper]
Quantum-PEFT: Ultra parameter-efficient fine-tuning (ICML 2024 Workshop)
Toshiaki Koike-Akino*, Francesco Tonin*, Yongtao Wu, Leyla Naz Candogan, Volkan Cevher [paper]
Learning in Feature Spaces via Coupled Covariances: Asymmetric Kernel SVD and Nyström method (ICML 2024)
Qinghua Tao*°, Francesco Tonin*°, Alex Lambert, Yingyi Chen, Panagiotis Patrinos, Johan A. K. Suykens [paper, poster]
Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes (ICML 2024)
Yingyi Chen, Qinghua Tao, Francesco Tonin, Johan A. K. Suykens [paper]
Tensor-based Multi-view Spectral Clustering via Shared Latent Space (Information Fusion, 2024)
Qinghua Tao°, Francesco Tonin°, Panagiotis Patrinos, Johan A. K. Suykens [paper, code]
Unsupervised Neighborhood Propagation Kernel Layers for Semi-supervised Node Classification (AAAI 2024)
Sonny Achten, Francesco Tonin, Panagiotis Patrinos, Johan A. K. Suykens [paper]
Deep Kernel Principal Component Analysis for Multi-level Feature Learning (Neural Networks, 2024)
Francesco Tonin, Qinghua Tao, Panagiotis Patrinos, Johan A. K. Suykens [paper, code]
Primal-Attention: Self-attention through Asymmetric Kernel SVD in Primal Representation (NeurIPS 2023)
Yingyi Chen, Qinghua Tao, Francesco Tonin, Johan A. K. Suykens [paper]
Nonlinear SVD with Asymmetric Kernels: feature learning and asymmetric Nyström method (preprint)
Qinghua Tao*°, Francesco Tonin*°, Panagiotis Patrinos, Johan A. K. Suykens [paper]
Combining Primal and Dual Representations in Deep Restricted Kernel Machines Classifiers (ECML 2023 Workshop)
Francesco Tonin, Panagiotis Patrinos, Johan A. K. Suykens [paper]
Extending Kernel PCA through Dualization: Sparsity, Robustness and Fast Algorithms (ICML 2023)
Francesco Tonin*°, Alex Lambert*, Panagiotis Patrinos, Johan A. K. Suykens [paper, code, poster, project page]
Unsupervised Learning of Disentangled Representations in Deep Restricted Kernel Machines with Orthogonality Constraints (Neural Networks, 2021)
Francesco Tonin, Panagiotis Patrinos, Johan A. K. Suykens [paper, code]
Unsupervised Energy-based Out-of-distribution Detection using Stiefel-Restricted Kernel Machine (IJCNN 2021)
Francesco Tonin, Arun Pandey, Panagiotis Patrinos, Johan A. K. Suykens [paper, slides, code]
* indicates equal contribution, ° indicates corresponding author.
|